User reports running Qwen3 Coder Next in MXFP4 on RTX 3060 12GB (8GB VRAM effective) with 131k context at sustained 23 tokens/second. Configuration shared for web dev tasks, replacing paid Claude. Requires 64GB RAM; ideal for SaaS coding delegation.
Key Points
- 1.23 tokens/second sustained on RTX 3060 12GB with 131,072 context
- 2.MXFP4 quantization, GGML_CUDA_GRAPH_OPT=1 for speed
- 3.Replaces $100/month Claude Max for front/back-end web dev
- 4.Config: llama-server with -ngl 999, -c 131072, CUDA acceleration
- 5.Needs 64GB system RAM minimum
Impact Analysis
Enables high-quality coding AI on consumer hardware, cutting costs for indie devs. Boosts local LLM adoption for production workflows. Highlights efficient quantization for memory-constrained setups.
Technical Details
Uses llama-server with specific flags: -ngl 999, -t 12, -fa on, -cmoe, 131k context, batch 512. MXFP4 GGUF model on 64GB RAM PC.



